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Abstract

A truly intelligent system that interacts with the physical world must be endowed

with the ability the compute with shapes: despite this spatial reasoning is rarely

regarded as part of mainstream A.I. We argue that the study of "intelligent" spatial

algorithms is a worthwhile activity, and give opinions and suggestions for the way
forward.

1 What is Spatial Reasoning?

A truly intelligent system that interacts with the physical world must be endowed with the

ability the compute with shapes. Despite this the study of "spatial reasoning" is a young field

and is often confused with CAD/CAM. One problem is convincing people that the problem is

hard: we liken it to vision, which is a problem that humans deal with easily, but has proved

immensely difficult to solve on the computer. To see why spatial reasoning is of interest in the

field of space telerobotics, consider the following scenarios:

1. An unmanned orbital maintenance robot is sent to replace a failed module in a commu-

nications satellite. The replacement is effected by a teleoperated manipulator, which is

commanded to secure itself to the satellite, open an access door, bring out the old module,

and replace it with the new one. Such teleoperations are commonplace in earth-bound

activities which require the handling of hazardous materials; in the terrestrial case a hu-

man provides all the control of the manipulator via a wired teleoperator system. However,

although it is technically feasible to provide the control channels to and from a human op-

erator to an orbital vehicle, there is an unavoidable complication: the time lag introduced
by the sluggishness of electromagnetic waves as a communication medium. A distance of

only 15 000km introduces a delay of 0.1s, which is sufficient to make the manipulation task

much harder. What is required here is the ability for the manipulator itself to deal with

closing the low-level control loop: the manipulator take over tile low-level actions such as

"grip", "apply torque", and "open door". To effect these operations reliably requires a

system that can reason over the geometric properties of its environment.

2. A Martian Rover vehicle is exploring a small part of the surface of the red planet. Although

in constant communication with Earth it too suffers from the commands being sent from

Earth being decided on the basis of information it sent some time ago--in this case, upward
of half an hour. Even for such a vehicle to survive under such conditions it must at least

be able to react to such immediate hazards as boulders or crevices in its path; to operate
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efficiently it should be able to take some 'sensible' action in such cases (e.g., navigate

around boulders). It is important to realise that the problem is not just one of recognising

the hazard: once the hazard has been identified the appropriate corrective action depends
crucially on its geometry.

. A future space station is constructed by a number of astronauts with the help of a number

of assembly robots. These robots are smarter versions of the maintenance vehicle (scenario

1) which are under the command of the astronauts, who use spoken commands made up
from a small vocabulary to ease the data input problem. Thus these robots must be able

to decide on how to parse crude assembly plans (as given by the astronauts) and produce
detailed plans that they can execute. The parsing of these plans should take into account

the relevance of the potential detailed plan to the overall mission (i.e., they should reject

nonsensical parses) and, for reasons of safety, the robots should also try to forsee potential

dangers to either the astronauts or the fabric of the space station. (Such a robot would

probably require a good sense of dynamics and statics, as well as geometry.)

One thing that is clear from these examples is that all the tasks are "easy" for humans; we do

them without conscious effort. However even the simplest of the tasks (scenario 1) would stretch
our knowledge of how to write programs to deal with these problems. We first became interested

in spatial problems through work in assembly robotics (e.g., [26,1]); however the problems occur

in many guises. This paper explores the spectrum of such problems, and explains our first
attempts to build systems that are truly spatially aware.

1.1 Types of Spatial Reasoning Problems

We can get a better grasp of the extent of spatial reasoning problems by listing some of the
specific problems that have been tackled.

Storing the shape of objects. This is

spatial reasoning problems. Storing

solid modelling community, though
objects.

an obvious, though non-trivial, prerequisite for most

shapes has been the subject of much research in the

there the application is often to render pictures of

• Visual Recognition of Objects. This problem has been studied for many years now, with
limited, but steady, progress.

• Interference Detection. Given a number of objects in known positions and orientations,
do they overlap?

• Collision Detection. Given a number of objects with know motions, do they collide?

• Collision Avoidance. Given a number of objects with start and goal positions, plan collision
free motions.

• Grasp Planning. A specialised form of collision avoidance, where the goal is to obtain a
stable grasp position.

• Cloth Cutting. Given a number of two-dimensional templates and a quantity of stock
material, cut the items from the stock so as to minimise wastage.

• Bin Packing. Three dimensional analogue of cloth cutting, where we want to fit some parts
into a bin. However if, say, the parts are electronic components which are to be connected
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to form a device we would have further constraints on the solution, such as: minimising

the wiring, allowing some parts to dissipate heat, and fixing controls near to the surface

of the bin.

• Pipe Routing. Given an aircraft, plan routes for the various electrical ducts, hydraulic

pipes, etc., while taking into account safety factors and other constraints.

Designing a Mechanical Assembly. Here the input is a specification of the function of

the assembly; the output should be a physical description of a suitable assembly (and

preferably instructions as to how to make it).

It can be seen that spatial reasoning problems occur in a number of guises. The first problem

(storing shapes) has been the subject of much research in the geometric modelling community,

although it has often been with the main purpose of producing pictures of them. Some of

the problems have reasonbly well understood solutions; collision detection has been studied in

robotics, vision systems are in practical use, and grasp planning is possible for some manipula-

tors. Some of the problems have been well studied in theory, though the solutions so found are

still to be incorporated in a practical system (collision avoidance), while others are only solved

by humans with the help of a computer (cloth cutting, bin packing, pipe routing).

2 Problems with Spatial Reasoning

It should be clear that there are a large number of practical problems that require spatial

reasoning for their solutions; we were interested in looking for patterns that would help to find

general solutions. Examination of the spatial reasoning problems--some on paper, some using

computers--have lead us to identify certain generic problems and trends.

No single method of solution. When solutions are known to these problems several different

methods can be identified, with no one method being general. (For example, [9] describes

three different ways of performing collision detection, and [12] describes another.)

Different Representations. There is no single obvious way to store a shape, and different

methods of solving spatial reasoning problems may require different representations, and

thus have different functionality 1. This lack of a normal form for shape descriptions

means that it is difficult to write algorithms that work in all cases (as Murphy's Law

ensures that whichever shape representation system you use, somebody else will want to

use a different one), and conversion between the existing shape descriptions is slow at best

and an unsolved problem at worst.

Computer Arithmetic is of Finite Precision. Although we can compute quantities to what-

ever precision we like, for most spatial quantities we cannot represent them exactly; this

can cause many spatial algorithms to be ill-conditioned.

Shapes are Never Exact. All of the common methods of shape representation denote

idealised shapes; any real object has a shape which is never exactly known, but instead

has been manufactured or measured to some tolerance (or combination of tolerances).

1The classic contenders for primary representation in the solid modelling community are Constructive Solid

Geometry and the Boundary Representation, but others are known and are useful.
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• Objects never have random shapes. Many implementations of low-level geometric algo-

rithms work well with "random" shapes, but can have problems with shapes that show a

pattern. Unfortunately many objects show such patterns 2.

These problems might at first sight seem terminal, but we believe that they might be over-

come by suitable modularisation of spatial subsystems. By using meta-level reasoning we might

identify which particular spatial algorithm will perform a given task in the best manner. By

hiding the representation details within a module we can write application programs that need

not care which particular representation is used. By only demanding conservative answers to

queries, and never "exact" answers, we can leave the lowest level modules the problem of deciding
what sort of arithmetic is required, and what sorts of tolerances.

At present we have little hard evidence for the usefulness of this view. However we are

currently implementing a system designed with this modular philosophy in mind, namely the
spatial reasoning components for the Oxford Autonomous Guided Vehicle research.

3 The Oxford Autonomous Guided Vehicle Project

The Oxford Autonomous Guided Vehicle Project is a serious attempt to integrate many recent

advances in sensing and spa' "al planning to provide a reliable system that can operate in a semi-

structured (factory) environment. The is using a research version of the a vehicle developed and

manufactured jointly by GEC plc (in the UK) and the Caterpillar Corporation (in the USA).

This version has the same guidance, control and sensing capabilities of the standard vehicle,

but it is smaller (more suitable for our laboratory) and is built to allow the fitting of extra

equipment. To deal with the uncertainties in the world we must detect them, and so a number

of different sensor systems are being attached to the vehicle, including vision cameras, a sonar

array, a depth sensor, and an infra-red sensor. These sensor systems are major research projects
in their own right (see [5] for an overview). The reason for having a number of different sensors

is to be able to combine their output, with the noisy or poor data from one sensor being made

up by better information from others. This is the domain of sensor data fusion, which is another

major research topic. From the point of view of this paper the sensor data fusion system forms

a convenient bridge between the sensor systems themselves, and the geometric models which

define the planning systems' model of the world. This role is highlighted by the overall system
architecture of the project (figure 1).

Effectively information flows from the sensors to the sensor data fusion stage, and the sensor

data fusion stage updates the world model with information it regards as pertinent and reliable.

This architecture effectively allows the spatial planning systems to operate on the assumption

that the information from the sensing systems is perfect; we are ignoring any tolerances in

the data. (This is excusable in the application domain, but might not be, of course, in other
domains.)

Two planning modules are shown connected to the world model. These correspond to two

basic modes of the vehicles operation, namely motion between start and goal points whilst

avoiding obstacles (as detected by the sensing systems), and acquisition of a pallet from a pile of

mixed pallets and boxes. These operations form an important subset of the operations performed

by typical factory vehicles. These modes were chosen for a particular reason: the first mode

involves planning a path that avoids objects, whereas the second mode involves planning a path

2An example which we know well is the computation of configuration space obstacles by the vertex-set difference
method [19]; this produces a regular set of points which broke most of the convex hull algorithms that we fed it
to.
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that contacts objects (viz., picking up pallets using a fork-lift attachment). The support of these

two modes within the same system is a major challenge for our modular approach. The final

module--the overall planner--is a relatively simple task planner that selects a subtask using

information supphed by a central factory computer. (Figure 2 shows a model of our vehicle

approaching a pallet in our laboratory.)

I Sensor [ [ Sensor

\
Data Fusion

I
World Model

/
bstacle Avoidance

etc...

/
I

\
Object Acquisition]

\ /
Overall Planner

Figure 1: Overall System Architecture

In fact each of the three spatial reasoning modules (the world model, the path planner, and

the acquisition module) are themselves modular, as discussed below.

3.1 The World Model

The world model accepts requests for information from the two spatial planning modules, and

uses a combination of four internal models to answer the requests. This view of the world model

is sketched in figure 3.

The four components of the world model can be divided into two pairs, consisting of static

and dynamic information. The factory layout model "looks" like a two-dimensional plan of the

factory, on which are marked static items (e.g., machining centres, pillars, doorways), quasi-static

items (e.g., waste bins, doors), and nominal roadways. The 3D models are three-dimensional

representations of objects that the vehicle senses or (literally) comes into contact with, for

which a simplified two-dimensional projection will not suffice. (If there are many instances in

the factory of, say, parts bins, only a single instance is stored in this component.) This split

between two-dimensional and three-dimensional information is there partly because lends itself

to the makings of an efficient system, but mainly because it is natural: factory layouts are a

common representation (and are good for planning routes), and three-dimensional databases are

generally used for holding instances of objects. When the sensing systems require information
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Figure _: A ROBMOD Model of the AGV Laboratory

about what is visible, the kernel should refer to the layout model to discover which objects are

(potentially) within the view, make up a three-dimensional model using instances from the solid
modeller, and extract the visibility information from that.

The other components of the world model will change, both due to the discovery of unex-
pected objects and due to the movement of the vehicle itself.

3.2 Obstacle Avoidance

The fact that the environment of the AGV is reasonably well-structured means that we can

take advantage of very simple path planning algorithms; in particular, much of the time the

AGV can use generate-and-test, whereby a path is proposed and then checked for validity. In
turn, proposing paths for the AGV is normally quite simple, as unless there are reasons to do

otherwise the vehicle can just uses the factory roadways. The only real problem occurs when

an unexpected obstacle is encountered, when we expect one of three strategies to be used:

• If the obstacle is small we will use a potential-field approach to attempt to define a detour

motion around it [16]; this motion is verified by the path-checker before being accepted.

• If the obstacle is larger the system will use a C-space approach, using a number of two-

dimensional C-space maps covering a small number of vehicle orientations [19,18].

• If the route is blocked the vehicle will try to backtrack to find another route.

To perform collision detection we will use the routines already built into the ROBMOD system

[10,9]. These routines have been optimised to perform intersection tests using S-bounds, which

is a simple method for reasoning about the bounding volumes [8].
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Figure 3: World Model Components

3.3 Object Acquisition

The purpose of the object acquisition experiment is to introduce the AGV into a space into which

a number of loaded pallets have been positioned in an irregular manner. The AGV will have a

fork-lift attachment, and has to identify the pallets, compute their orientations, and plan how

the acquire the pallets using the fork-lift. In doing so it must take into account the positions of

other objects and pallets in the area in order to avoid collisions. The path planning required in
this case is thus of a different calibre from that required for obstacle avoidance, as it is necessary

for the forks of the vehicle to come into close proximity with other objects. However, the class

of objects that has to be tackled is restricted--namely, in the first instance, to pallets. Thus

our approach is to use simple skeletonised plans to propose paths for the vehicle, which are then

tested for validity. This will clearly work in simple cases; the challenge will come in getting the

system to work well in relatively cluttered cases.

4 Related Work

Most of the push for what we now call geometric or solid modelling came from the engineering

community [6,28,29]; [2] is an exception it that it was originally intended for vision research,

although it was never really used for that purpose.

Collision avoidance has long been of interest in the robotics community [25,30]; more recently

the configuration space approaches have been popular [21,19,33], although other methods are

known [24,16]. No general methods for grasp planning have yet been developed [32,23]. Inter-

ference detection has been well-studied [3] and many methods for performing collision detection

are known [10,12]. Mechanical assembly design is the study of the Design to Product project

[14,27].
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Figure 4: The World of Spatial Reasoning.

5 Looking Ahead

Although the implementation work for the AGV project is still in its infancy, we can see a

potential problem ahead if we were to try to extend our strict, hierarchal model of spatial
reasoning to more complex problems. Effectively, our current model has three levels. At the

top level there is the spatial reasoning 'module', that given a well-posed problem selects a

suitable algorithm to solve it. The next level down is the realm of computational geometry;

the algorithms themselves. These algorithms have to be implemented on real computers, and
so there is a final level where these algorithms are converted into suitable code--I call this the

geometric programming level, and it is currently handled by humans. The potential problem

is that exemplified by the fact that many computational geometry algorithms will break on

certain inputs. If this happens with our strict hierarchy there is no mechanism to report useful
information back. The eventual solution to this problem is unclear; I postulate an overseer level

that sits on top of the existing hierarchy and can sense when things are going badly. With

tongue in cheek I have dubbed this extra level the "Artificial Geometry" level (figure 4).

Taking the idea of an artificial geometry expert one stage further, we could envisage such an

overseer that could write the computational algorithms for itself; at present only humans can

do this task, which is more of an art than a science. Of course, we have yet very little idea

as to how we could construct such an "expert"; however, we are keeping its future existence in

mind as we tackle some of the very difficult problems on the lower levels of the spatial reasoning
hierarchy.
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